A Flexible Context Stabilization Approach for Self-Adaptive Application

Russel Nzekwa, Romain Rouvoy, Lionel Seinturier
March 29, 2010
CoMoRea’10 Mannheim, Germany
Outline

1. Context & Problem Statement

2. A Flexible Context Stabilization Approach

3. Evaluation

4. Conclusion & Perspective
Context

• Is self-adaptive system the new success story?
 • Increasing demands
 – Economy and financial system
 – Business and military strategic planning
 – Ubiquitous computing and etc..
 • Several research fields mobilize
 – Control theory
 – Artificial intelligence
 – Software engineering and etc.
Context

• Reasons of “rushing” to self-adaptive system
 • *Complexity of software systems*
 • *Cost of application maintenance*
 • *Market perspectives*
 • *Technological / Scientific challenges*
Problem Statement

- Autonomic systems [kephart’03]
Problem Statement

• Self-adaptive system
 • *Dynamic context*

Continuously adapt to changes

System instability
Problem Statement

• Self-adaptive system
 • Dynamic context

Continuously adapt to changes

System stable

Stabilization mechanisms
Problem Statement

• Motivations for Stabilization Mechanisms (SM)
 • *SM are nested in decision making*
 – *Increase adaptation cost*
 • *SM are difficult to customize (efficiency)*
 • *SM not flexible* (reuse across platform)
 • *SM have a limited scalability*
Problem Statement

• How to meet the challenge?

1. *Stabilization of self-adaptive system is a cross-cutting problem*

2. *Provide a flexible and transparent methodology to integrate stabilization mechanisms in self-adaptive system*
Outline

1. Context & Problem Statement

2. Flexible Context Stabilization Approach

3. Evaluation

4. Conclusion & Perspective
Flexible Stabilization Approach: Definition

• Stabilization Techniques (ST):

 algorithms and mechanisms aiming to regulate the responsiveness of context-aware systems, allowing their (re-)configuration when significant changes occur in their surrounding.
Flexible Stabilization Approach: Classification
Flexible Stabilization Approach

• Stabilization as a cross-cutting concern
Flexible Stabilization Approach
Flexible Stabilization Approach

How do we integrate stabilization algorithms?
Flexible Stabilization Approach: Classification

• Stabilization techniques lessons from the SotA
 • A unique and optimal ST does not exist
 – Each group of stabilization techniques has its strength and weakness
 • A ST is efficient and optimal only for a set of case study

• Combination of ST provides better results
Flexible Stabilization Approach: Strategy

• Composition Strategies
 – *Horizontal composition*
 – Concurrent execution of stabilization algorithms
 – Improve accuracy of the stabilization
 – *Vertical composition*
 – Sequential execution of several stabilization techniques
 – Improve efficiency of stabilization
Flexible Stabilization Approach: Strategy
Outline

1. Context & Problem Statement

2. A Flexible Context Stabilization Approach

3. Evaluation

4. Conclusion & Perspective
Flexible Stabilization Approach: Evaluation

• Experiments Description
 • Platforms
 – COSMOS framework - Context management
 – SIAFU – Context generator

• Measurements
 – Temperature variations around set range
 – Delta Operator (DO) and Kalman Filter (KF) Stabilization techniques
Flexible Stabilization Approach: Evaluation
Flexible Stabilization Approach: Evaluation
Outline

1. Context & Problem Statement

2. A Flexible Context Stabilization Approach

3. Evaluation

4. Conclusion & Perspective
Conclusion & Perspective

• Propose a flexible approach to handle stabilization for self-adaptive systems
 • Composition strategies
 – Horizontal: improve accuracy
 – Vertical: improve efficiency
 • Integration of SotA ST

• Perspective
 • Deploy our approach in a real very-large-scale application (SALTY)
QUESTION ?

Thank you !!!